
PHYSICAL REVIEW E JULY 1997VOLUME 56, NUMBER 1
Universality for interacting oriented self-avoiding walk: A transfer matrix calculation
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In this paper we perform transfer matrix calculations to study the two-dimensional problem of oriented
self-avoiding walks on a square lattice where nearest neighbor interactions depend on the relative orientation
~parallel or antiparallel! between different parts of the path. Our main purpose is to verify a conformal field
theory conjecture that the entropic exponentg, which is related to the number of such walks, varies continu-
ously with the energy of the parallel interaction. We find no evidence of this behavior, but see many unex-
pected features for the model, such as the existence of a line ofu points belonging to the universality class of
polymer collapse on a Manhattan lattice. Finally we study the phase diagram in the parallel and antiparallel
interaction planes and we conjecture a crucial role for the standardu point. @S1063-651X~97!05906-0#

PACS number~s!: 05.50.1q, 05.70.Fh, 61.41.1e
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I. INTRODUCTION

The problem of a polymer chain collapsing at low tem
peratures due to the competition between the excluded
ume and the attractive interactions between the monom
composing the chain has been of long-standing theore
interest. The associated phase transition occurs at a tricri
u point @1–4#. The basis for most lattice models is the se
avoiding walk ~SAW!, which, by construction, includes a
excluded volume interaction, important in physical po
mers. To mimic the complicated monomer-solvent inter
tions that give rise to the collapse transition, an energy
associated with nonconsecutive nearest neighbor port
~e.g., sites or bonds! of the walk @interacting self-avoiding
walk ~ISAW!#.

A simple, but intriguing, modification of the ISAW mode
@5,6# has been recently introduced to study polymers with
intrinsic orientation. Such an orientation could be due to
presence of dipole moments on the monomers of the ch
or to a precise ordering in the sequence of monomer c
stituents, as in the case of theA-B polyester@7#. In this
model a direction is attached to the whole walk, which
turn is associated to each step of the walk. Short-range in
actions are divided in two types according to the relat
orientation~parallel or antiparallel! of the monomers which
are in contact.

Such a model, named the interacting oriented s
avoiding walk~IOSAW!, has attracted considerable intere
due to some unexpected results predicted for its critical
havior by conformal field theory. According to the mo
striking of these conjectured results, the entropic expon
g, which relates to the total numbercN of open walks of
lengthN via the formulacN;Ng21mN, is not a universal
quantity. At least for a repulsive energy it would seem
depend continuously on the temperature@5#.

Since the publication of these fascinating but unfores
results, several attempts have been made to verify num
cally their validity. Despite all of these efforts the situation
still quite controversial. It is numerically difficult to extrac
the exponentg and to observe the predicted nonuniversali
which is expected to be small. Indeed, exact enumeration@6#
561063-651X/97/56~1!/131~13!/$10.00
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and transfer matrix calculations@8# seem to confirm, al-
though with some caution, the existence of such nonuniv
sality, whereas the authors of recent extensive Monte C
simulations@9,10# are much more doubtful on the validity o
the conformal invariance hypothesis.

In this paper we try to get new insight into this proble
by studying, using the transfer matrix~TM! technique, some
parts of the phase diagram which have not yet been el
dated but that are crucial in order to clarify the validity of th
conjecture.

We first estimate the values of the entropic exponen
the limit where the parallel interactions are completely fo
bidden. In this limit the effect of the predicted nonunivers
ity is most important while the absence of parallel conta
introduces a relevant simplification in the configuration
analysis, allowing us to work with larger system sizes than
the previous calculations.

Secondly, we follow the behavior ofg along one of the
u lines present in the phase diagram. It is possible to ap
heuristic arguments~confirmed by our numerical work!
showing that there are different values ofg in at least two
points of this line. It then turns out that such au line should
be an optimal candidate for exhibiting a continuous variat
of the entropic exponent.

The main result is that, while no evidence of a continuo
variation of the critical index is found, the phase diagra
presents an extremely rich variety of universality classes

The paper is set out as follows. In the next section
introduce the IOSAW model and briefly review the resu
obtained thus far. We discuss the general features of
phase diagram as they emerge from previous papers an
recall the conformal field theory predictions and their n
merical checks. In Sec. III we present the TM method
gether with the phenomenological renormalization gro
strategy used to compute the critical exponents. Section I
devoted to presenting our results for the regime where p
allel contacts are forbidden. As a by-product of this analy
we show how it is possible to improve previous TM calc
lations for the general problem and we present our estim
for the above mentionedu line. We then map the phas
diagram of the model~Sec. V!. In the last section we sum
131 © 1997 The American Physical Society
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132 56A. TROVATO AND F. SENO
marize our results and present possible further developme

II. THE MODEL AND THEORETICAL PREDICTIONS

The IOSAW model@5,6,8–10# is an oriented SAW em-
bedded on a square lattice. Interactions are assigned to b
which are on opposite edges of the lattice plaquette~Fig. 1!.

If we indicate byW one of these walks withuWu steps, the
partition functionZN(bp ,ba) and the average end-to-en
distanceRN(bp ,ba) for walks withN steps are

ZN~bp ,ba!5 (
uWu5N

emp~W!bp1ma~W!ba, ~2.1!

RN
2 ~bp ,ba!5

(
uWu5N

r 2~W!emp~W!bp1ma~W!ba

ZN~bp ,ba!
, ~2.2!

where the sums are over all the oriented walks of lengthN;
mp(W) andma(W) are, respectively, the number of parall
and antiparallel contacts;r 2(W) is the squared end-to-en
distance for each walk and the parametersbp and ba are
given by bp5bep and ba5bea , whereb is the inverse
temperature and2ep and2ea are the energies for paralle
and antiparallel interactions. For largeN we expect

ZN~bp ,ba!;@m~bp ,ba!#
NNg~bp ,ba!21, ~2.3!

RN
2 ~bp ,ba!;N2n~bp ,ba!. ~2.4!

Equation~2.3! is thought to be true at least for all the e
tended andu phases, whereas in the collapsed regime
more involved expression is needed@11#.

The reduced free energy per stepk(bp ,ba) in the ther-
modynamic limit can be readily obtained from Eq.~2.3!
through the following equation:

k~bp ,ba!5 lim
N→`

ln@ZN~bp ,ba!#

N
5 ln@m~bp ,ba!#.

~2.5!

FIG. 1. An oriented self-avoiding walk on a square lattice w
parallel and antiparallel interactions between nonconsecutive b
which are nearest neighbors.
ts.

nds

a

Whenbp5ba50, the model describes the free SAW an
the critical exponents n(0,0)5nSAW5 3

4 and
g(0,0)5gSAW5 43

32 are exactly known from Coulomb ga
techniques@12#. The case whenbp5ba is the usual interact-
ing walk problem: forbp5ba,bu the model falls in the
universality class of the SAW, whilem depends on the tem
perature. Atbp5ba5bu the system exhibits tricritical be
havior (u point! with n(bu ,bu)5nu5 4

7 @2# and
g(bu ,bu)5gu5 8

7 @2#. Finally, forbp5ba.bu , it collapses
in its globule phase (n5 1

2!.
It is possible to argue that in the phase diagram there

at least three different regions~Fig. 2!: a free phase (F)
occurring for negative or small values ofbp andba where
the asymptotic behavior of the walks should be governed
the SAW correlation length exponent; a spiral phase (S), for
high values ofbp , where the most statistically importan
walks are tightly bound, compact spirals; and a ‘‘norma
collapsed phase (C) for high values ofba and negative or
moderate values ofbp .

Much information about the phase diagram can be deri
from the simple, but important, fact that oriented loo
~closed oriented walks! do not contain any parallel interac
tions. Then the transition between the free and the sp
phases cannot be the usualu transition because it canno
occur for loops. The absence of parallel interactions in loo
can also be used to rigorously prove that the free ene
k(bp ,ba) @and therefore the connectivity consta
m(bp ,ba) in Eq. ~2.3!# is constant, for any fixedba , in the
interval 2`,bp<ba . This last statement implies that th
u line between the free and the collapsed phases is inde
dent of bp , at least forbp,bu , and is described by the
equationba5bu .

On the basis of these~and other! results and consider
ations, in conjunction with exact enumeration calculatio
the authors of Ref.@6# predicted a phase diagram, schema
cally represented in Fig. 2. According to them, the transit
to the spiral phase may well be first order from either one
the other two phases.

ds

FIG. 2. A schematic illustration of a conjectured phase diagr
in the (bp ,ba) plane as proposed by Bennett-Woodet al. @6#.
Three phases are shown: free (F), collapsed (C), and spiral (S).
The dotted line is the normal~i.e., nonoriented! collapse problem
with bp5ba and contains theu point.
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56 133UNIVERSALITY FOR INTERACTING ORIENTED SELF- . . .
The latest numerical work on the IOSAW has dealt on
with the lineba50. References@8,10# confirm the presence
of a free-to-spiral transition, but disagree on its order. W
will return later~Sec. V! to this point, and to the structure o
the phase diagram.

In the introduction it was stated that the two-dimensio
conformal invariance field theory predicts some new and
expected results for the IOSAW model. The analysis follo
from the fact that the oriented polymer problem can be
rived as the limitn→0 of a complexO(n) model@7,13#. In
this context the orientation dependent interaction has b
identified with a current-current coupling. Regarding th
coupling as a perturbation of the SAW regime and by us
the result that such a perturbation is truly marginal, it
possible to determine the critical exponents@5#.

Following this scheme Cardy predicted thatg(bp,ba) is a
nonconstant function ofbp whenba50 ~at least for negative
values ofbp). More precisely, forba50 the operator which
corresponds to the source of aq-leg oriented SAW scales
with an exponent

xq~bp,0!5
9q224

48
12pl~bp!q

25xq~0,0!12pl~bp!q
2,

~2.6!

wherel(bp) is an unknown function ofbp having the op-
posite sign of its argument@i.e., l(0)50# and supposed to
be monotonic@6#. These exponents are related to the entro
exponentsgq through standard scaling@6#, and for the linear
polymers, e.g.,q51, it turns out that

g~bp,0!5n@222x1~bp,0!#5nS 432424pl~bp! D .
~2.7!

It has to be pointed out that a dependence onbp is not
expected forn, whereas a behavior similar to the one e
pressed by Eqs.~2.6! and ~2.7! should be valid for the por-
tion of the planebp<ba andba,bu where the unperturbed
regime is that of the SAW model.

Two strategies have been employed to check this con
ture. One is based on the calculations of the two quantit

Dq~bp ,0!5gq~0,0!2gq~bp ,0!, ~2.8!

Rq,q8~bp ,0!5
Dq~bp ,0!

Dq8~bp ,0!
5

q~q11!

q8~q811!
~2.9!

for different values ofq andq8. The gapsDq(bp ,0) should
increase asbp goes to2` while the ratiosRq,q8(bp ,0)
should be independent frombp .

The second scheme follows from the fact that ifg de-
pends onbp then^mp&, the average number of parallel co
tacts, should grow at the SAW point logarithmically with th
length of the walkN, otherwise it should be independent
N.

Earlier results obtained from exact enumerations@6#
found very tiny values forD1(2`) @0.0091(33) and
0.0115(15)#, but a possible confirmation of the theory w
found by looking at the two-legged case and by noticing th
up to lengthN527, ^mp& was growing logarithmically with
N @6#. Further support to Cardy’s theory was given by t
e
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TM calculation of Ref.@8# where the scaling dimension
xq(bp,0) were calculated for q51,2,3,4 and for
bp521,22,23. However, more recent Monte Carlo en
merations@10# show that for largeN (N up to 5000)^mp&
seems to saturate to a constant in clear contrast with
conformal field theory conjecture. In our opinion, this res
cannot be considered definitive, because the nonunivers
effect would lead to a very tiny slope for^mp& as a function
of lnN. This could still be present in the results of Ref.@10#.

To start our analysis of this puzzling problem we noti
thatDq ~if the theory is correct! reaches its maximum valu
for bp52`. The most convenient thing to do would be
work exactly in that limit where the calculation is even sim
pler than elsewhere in the phase diagram, because the
sence of parallel contacts simplifies any numerical approa
This simplification will increase the size of the semi-infini
strips that can be studied through a TM approach.

It has been observed@5,6# that the presence of paralle
contacts implies that at least one end of the walk is trapp
One may expect that forbp52`, when parallel contacts ar
strictly forbidden, the walks could not be trapped.~This fact
has been used by Cardy to state that, if his conjectur
right, the fraction of untrapped walk, which goes withN as
Ng(2`)2g(0), is vanishingly small whenN→`). However,
this is not the case for the IOSAW model with interactio
between bonds on a square lattice. As shown in Fig. 3~a!, it
is possible to have a trapped walk without any parallel bo
interactions.

We then propose two changes to the model. The first
is to consider interactions between nearest neighbor s
~rather than bonds! of the oriented walk which are not di
rectly linked. As can be seen in Fig. 4, this makes it mo
difficult to assign the type of energy contact~parallel or an-
tiparallel!, however, the model is still well defined and in th
limit bp→2` we no longer have the undesired configur

FIG. 3. ~a! An oriented SAW configuration with a trapped en
but without any parallel contact between bonds.~b! An oriented
SAW configuration with a trapped end but without any paral
contact between sites.
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134 56A. TROVATO AND F. SENO
tions of Fig. 3~a!. However, this is not enough: Fig. 3~b!
shows a trapped configuration without any parallel conta
between sites. A third version of the model is then necess
which takes into account also next-nearest neighbor inte
tions ~we call it the plaquette model because, from a com
tational point of view, it is convenient to consider sing
plaquettes of the lattice and to verify whether they are visi
by different portions of the walk!. In this way the problem of
trapped walks is completely solved, although the definit
of parallel or antiparallel contacts is quite cumbersome. B
for the site and for the plaquette model it is possible to r
erive @14# all the rigorous results obtained in Ref.@6#.

Before returning our attention to the free-to-collaps
phase line ofu points we recall an argument due to Benne
Wood et al. @6#. There is a close analogy between t
IOSAW problem forbp52` and that of interacting walks
on a Manhattan lattice. The Manhattan lattice is a tw
dimensional square lattice on which bonds are directed
that there is no overall directional bias~Fig. 5!. On this lat-
tice a SAW is oriented by default, but in the interacting ca
there are no parallel interactions~in the spirit of the plaquette
model!.

This model has been exactly solved at its collapse tra
tion @15#. It turns out that the exponentn is unchanged com
pared to the standardu-point value of47, while the exponent
g is 6

7 instead of
8
7. Although this mapping betweenIOSAW at

bp52` and ISAW on the Manhattan lattice is not rigorou
it is quite plausible that the point (bp52`,ba5bu) in the
oriented polymer phase diagram falls in the same univer
ity class as theu point of Manhattan walks. If this conjectur
is verified, two points along theu line have very distinct
values of the g exponent: g(2`,bu)5

6
7 and

g(bu ,bu)5
8
7. It is then intriguing to think that Cardy’s hy

pothesis may also hold along the free-to-collapse line wh
due to the quite clear difference between the extremal val
it should be much easier to see a continuous variation of
exponentg. In order to study these questions we decided
use the TM technique.

FIG. 4. An oriented SAW on the square lattice with parallel a
antiparallel interactions between sites which are nearest neigh
not directly linked by the walk.
ts
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III. THE TRANSFER MATRIX CALCULATION

The TM has proven to be a useful tool for problems
statistical mechanics. It has been extremely effective in
study of models of interacting polymers in two dimensio
@16–20#.

It is convenient to define a two point correlation functio
as

rs

FIG. 5. The Manhattan lattice: an oriented square lattice.

FIG. 6. Example of possible configurations defined for a SA
on a strip of widthL56, in the simple case without either orienta
tion or interaction.
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56 135UNIVERSALITY FOR INTERACTING ORIENTED SELF- . . .
G~x,bp ,ba ,r !5 (
N51

`

(
mp ,ma

xNempbp1mabacN~mp ,ma ,r ! ,

~3.1!

wherex is the step fugacity andcN(mp ,ma ,r ) is the number
of different oriented walks, made up withN steps andmp
(ma) parallel~antiparallel! contacts which connect the origi
with an arbitrary point at distancer . For fixed values ofbp
and ba , a definite valuexc(bp ,ba)51/m(bp ,ba) exists,
called critical fugacity, such thatG(x,bp ,ba ,r ) decreases a
long distances exponentially withr for x,xc(bp ,ba), defin-
ing in this way a correlation lengthj(x,bp ,ba):

G~x,bp ,ba ,r ! ;
r→`

expF2
r

j~x,bp ,ba!
G . ~3.2!

j(x,bp ,ba) diverges whenx↗xc(bp ,ba) and the way in
which it breaks away gives the exponentn of Eq. ~2.4!:

j~x,bp ,ba!;@xc~bp,ba!2x#2n~bp ,ba! . ~3.3!

The TM approach consists of calculating exactly the c
relation lengthjL(x,bp ,ba), defined in Eq.~3.2!, on an
L3` strip, that is to say, a lattice strip of infinite length an
finite width L. The idea is to write recursion relations b
tween a strip of lengthr and a strip of lengthr11. If we
consider a walk on a strip which goes from the left to t
right and we cut the strip at columnr ~see Fig. 6!, the part of
the path at the left of columnr realizes a connectivity con
figurationC of the sites at columnr . Giving C is the same as
knowing the occupied sites of columnr and how these oc
cupied sites are connected with each other by the part of
walk at the left ofr . In order to consider the interacting cas
we have to take care, in the definition of a given configu
tion C at column r , also about the bonds occupied by t
walk between columnsr21 andr .

The number of possible configurationsC corresponds to
the sizeSL of the TM; this size can be strongly reduced
considering symmetry operations.

TABLE I. Transfer matrixes sizeSL of q-legged walks for dif-
ferent values of the strip widthL at bp52` in the case of site~or
plaquette! interaction.

SL for q-legged walks
Strip widthL q51 q52

1 1
2 1
3 2
4 6 1
5 23 2
6 95 10
7 398 41
8 1716 200
9 7487 932
10 33121 4470
11 147909 21212
12 101090
-

he
,
-

For each couple of allowed configurationsC and C8,
thought to correspond to adjacent columns, the TM is set
by calculating the quantity

TCC85xt~C8!ebp[up~C8!1vp~C8,C!]eba[ua~C8!1va~C8,C!] ,
~3.4!

where t(C) is the number of occupied bonds inC, up(a)(C)
the number of parallel~antiparallel! contacts in C, and
vp(a)(C8,C) the number of parallel~antiparallel! contacts be-
tween the monomers inC8 and those added to obtain con
figurationC. If there is no way to connect the two configu
rationsC andC8, the matrix elementTCC8 is zero.

Once the matrixT has been computed for a strip of widt
L, it is trivial to extract the statistical quantities of interes
As r→`, the expression ofGL(x,bp ,ba ,r ) is dominated by
the largest eigenvalue of theTM, lL

max(x,bp ,ba):

GL~x,bp ,ba ,r ! ;
r→`

@lL
max~x,bp ,ba!#

r . ~3.5!

This means that for a strip of widthL the correlation length
is given by

jL~x,bp ,ba!52
1

lnlL
max~x,bp ,ba!

. ~3.6!

FIG. 7. ~a! Critical fugacity xc
L,L11(bp,0) for the site model

against the inverse of the strip widthL atbp521,22,23,2`. ~b!
Plot of the critical exponentnL,L11(bp,0) at the same values o
bp and with the same conventions as in~a!.
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136 56A. TROVATO AND F. SENO
A one-parameter phenomenological renormalizat
group approach can be used to obtain finite size approxi
tions to the critical fugacity,xc

L,L1m(bp ,ba), by comparing
the correlation lengths of strips of different widths,L and
L1m:

FIG. 8. ~a! Critical exponenthL(xc
SAW ,bp,0) against the inverse

of the strip widthL atbp521,22,23,2` for the bond model.~b!
As in ~a! but for the site model, and for the plaquette model in t
casebp52`.
-
e
n

ith

in
n
a-

jL~xc
L,L1m ,bp ,ba!

L
5

jL1m~xc
L,L1m ,bp ,ba!

L1m
, ~3.7!

wherem is an integer number~usuallym51 orm52). Lin-
earizing around the fixed point of Eq.~3.7! gives a series of
approximations for the correlation length exponentn:

FIG. 9. Plot of the quantityS2,1
L (2`), defined in Eq.~4.1! of the

text, against the inverse of the strip widthL for all the considered
models~bond, site, and plaquette!.
11
1

nL,L1m~bp ,ba!
5 lnF djL~x,bp ,ba!

dx U
x5x

c
L,L1m~bp ,ba!

djL1m~x,bp ,ba!

dx U
x5x

c
L,L1m~bp ,ba!

G 1

lnS L

L1mD . ~3.8!
le
alk

, it
ing
the
is-

to

di-
d-
To examine the exponentg one can use the scaling rela
tion h52x522g/n, whereh is the exponent governing th
decay at long distances of the critical correlation functio
Finite size approximations toh can be obtained from the
conformal invariance result@21#:

hL~x,bp ,ba!52xL~x,bp ,ba!5
L

pjL~x,bp ,ba!
,

~3.9!

where the correlation length is evaluated for a strip w
periodic boundary conditions.

The previous analysis can easily be adapted for any k
of IOSAW model~bond, site, or plaquette interactions! and
.

d

for anyq-leg type of oriented polymers. Of course the who
procedure is not a trivial task since, in our model, the w
carries an orientation. As explained in Ref.@8# this implies a
larger TM than for the standard ISAW problem. Moreover
is much more complicated to keep track of the noncross
constraint: some configurations have to be disregarded if
orientations of the different parts of the walk are not cons
tent with this constraint.

The situation is slightly simpler if we restrict ourselves
the case where parallel bonds are forbidden (bp52`). In
this case a configurationC such thatup(C)Þ0 cannot exist.
By using suitable symmetry and periodic boundary con
tions we could work for the bond, site, and plaquette mo
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56 137UNIVERSALITY FOR INTERACTING ORIENTED SELF- . . .
els with strips up toL510, L511, L510, respectively, in
the case of one-leg polymers. The sizes of the different
trices are listed in Table I.

For the general IOSAW model, without any configur
tional simplification, we could operate with widths up
L59 for each of the models considered. This correspond
an improvement of two units compared to the previo
analysis of the same problem@8#.

IV. ANALYSIS OF THE NONUNIVERSALITY
PREDICTION

We start our numerical analysis by considering the l
ba50 for bp<0, where the theoretical predictions of co
formal invariance should hold in the form expressed by E
~2.7!. For fixed values ofbp and ba and for any type of

TABLE II. Critical exponenthL(xc
SAW ,2`,0) for different val-

ues of the strip widthL in the three models considered, with fin
extrapolations in the thermodynamic limitL→`; the power-law
convergence exponent used in the Bulirsch-Stoer algorithm
v51. The error bars have a purely statistical meaning.

hL(xc
SAW ,2`,0)

Strip widthL Bonds Sites Plaquettes

1 0.308786 0.308786 0.308786
2 0.258368 0.617572 0.617572
3 0.251908 0.387552 0.469266
4 0.246514 0.323980 0.386670
5 0.241406 0.293070 0.339154
6 0.237080 0.275156 0.309874
7 0.233584 0.263574 0.290700
8 0.230786 0.255490 0.277438
9 0.228524 0.249526 0.267818
10 0.226670 0.244940 0.260560
11 0.241300

Extrapolations 0.2094~32! 0.2096~10! 0.2085~14!

TABLE III. Critical exponenthL(xc
u ,2`,bu) for different val-

ues of the strip widthL in the sites model, with final extrapolatio
in the limit L→`; the power-law convergence exponent used in
Bulirsch-Stoer algorithm isv52. The error bars have a purel
statistical meaning.

Strip widthL hL(xc
u ,2`,bu)

1 0.371570
2 0.743138
3 0.582390
4 0.555390
5 0.537908
6 0.528058
7 0.521530
8 0.517070
9 0.513858
10 0.511496
11 0.509748

Extrapolations 0.5010~20!
a-

to
s

e

.

IOSAW ~site, bond, plaquette! we first compute
xc
L,L1m(bp ,ba) ~the casem51 is the most used! by using
Eq. ~3.7!. We then estimate the correlation length expon
nL,L1m(bp ,ba) through Eq. ~3.8! and the exponen
hL(x,bp ,ba) by means of Eq.~3.9!. In this last case the
most natural strategy is to computehL(x,bp ,ba) at the criti-
cal valuex5xc

L,L1m(bp ,ba) obtained with the phenomeno
logical renormalization group law~3.7!.

However, it is more efficient to explicitly use the fact th
xc(bp,0) is constant and equal toxc(0,0) for any value of
bp less than 0. Along this line we can then calculatehL at
x5xc(0,0)5xc

SAW using the estimatexc
SAW50.379 052 3

@22#; in this way it turns out that these estimates ofhL are
more asymptotic than with the standard approach.

We repeated this procedure forbp521,22,23 where
some measurements have already been made in Ref.@8# with
the bond model, but where our calculation adds two ex
terms for the strip widthL, and for the more significant cas
bp52` where our TM can work with strips up toL511 or
L510, depending on the model.

As a check of the quality of our approach and to und
stand the kind of convergences in 1/L to expect, we conside
the critical fugacityxc

L,L11(bp,0) and the thermal exponen
nL,L11(bp,0). Both these two quantities should mainta
their SAW values (nSAW5 3

450.75 andxc
SAW50.379 052 3)

for any value ofbp . In Fig. 7 we plot these results for th
site model. In order to make a comparison we insert
estimates for the SAW case where we can work with s
widths up toL513.

Although the convergence is much slower than for t
SAW , it is quite clear that the different sets of points a
proach the expected values. This can easily be confirme
an extrapolation of the data with one of the sophistica
techniques that are used with TM calculations, such as
Bulirsch-Stoer algorithm@23,24#.

We can then look at the entropic expone

FIG. 10. Critical exponenthL(xc
u ,bp,bu) against the parallel

interaction parameterbp , for different strip widthsL.
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FIG. 11. One-strip critical
fugacity xc

L(bp,0) ~a!, correlation
length exponentnL,L12(bp,0) ~b!,
average number of parallel con
tacts^mp /N&L(bp,0) ~c!, and step
specific heat (Cp

L/N)(bp,0) ~d!
against the parallel interaction pa
rameter bp for different strip
widthsL.
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hL(xc
SAW,bp,0). In Figs. 8~a! and 8~b! the obtained results

for the three models are plotted together with those for
SAW case. Again, at first sight, the data seem to converg
the SAW value (hSAW5 5

2450.2083) for every value of
bp , but this time we have to be more careful because
absolute values of the estimates are still quite far from
final results~Table II!; this means that the convergence
much slower than forxc andn. Nevertheless the applicatio
of extrapolation techniques again confirms an asympt
value for h very close to the SAW one for any value o
bp . Looking at Table II, we see that the extrapolated valu
of h(2`) for the three models are slightly higher than t
SAW value. If we want to be conservative and consider o
the site model which gives the highest estimate of the ex
nent, we cannot completely rule out the prediction of no
universality, but if we calculate the gapD1(2`), defined by
Eq. ~2.8!, we find that it is around 0.001, nine times smal
than observed by exact enumeration@6#. In other words, if
the nonuniversality exists it must give rise to an extrem
tiny effect. Indeed, from our numerical data, we can estim
an upper bound for the undetermined functionul(bp)u @de-
fined in Eq.~2.6!# equal toulmaxu5ul(2`)u50.0001. This
conclusion has been confirmed with the other two mod
~bond and plaquette!.

As a further check we consider two-leg oriented wal
Instead of the quantity described in Eq.~2.9!, it is more
convenient to look at the variableSq,q8(bp) defined by~in
e
to

e
e

ic

s

y
o-
-

r

y
te

ls

.

the following equation we have neglected the dependenc
ba and onxc , since they are fixed to the valuesba50 and
xc5xc

SAW)

Sq,q8~bp!5
Dhq~bp!

Dhq8~bp!
5

hq~bp!2hq~0!

hq8~bp!2hq8~0!
, ~4.1!

which, for any value ofbp less than zero, should giv
(q/q8)2 according to Eq.~2.6!.

In Fig. 9 we plot our estimates ofS2,1
L (bp52`) as a

function of 1/L, for the three models. We can see that t
data do not approach the expected value 4, but seem t
approaching three distinct values as is possible from
~4.1! if hq(2`)5hq(0).

These results seem to be in clear contrast with Eq.~2.6!,
and we conclude this part of the analysis by saying that
nonuniversality effects are unlikely along theba50 line.

To verify the other possibility, mentioned in Sec. II, that
continuous variation of the entropic exponentg could occur
along theu line between the free and the collapsed phas
we first check that the point (bp52`, ba5bu) really falls
in the universality class of the interacting SAW on a Ma
hattan lattice. To this end, it is convenient to work with t
site model because in the nonoriented case,bp5ba , it cor-
responds to the model usually employed to study theu tran-
sition, for which the location of transition and the relativ
critical fugacity have been determined very accurately
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means of Monte Carlo calculations@4# at the values
bp5ba5bu50.658(4) andxc(bu ,bu)5xc

u50.3112(13).
Our estimates forhL(xc

u ,2`,bu) with strips up to
L511 are listed in Table III. They converge towards12, as
expected for the Manhattanu point whereg5 6

7 andn5 4
7.

To explore theu line we have to use the standard TM, th
one implemented for the whole phase diagram, which allo
us to work with strips up toL58. ~For each single point we
can work with strip widths up to 9, as said in the preced
section, but the time required to study the full line would
prohibitive.! The exponenthL(xc

u ,bp,bu) is plotted in Fig-
ure 10 as a function ofbp for different sizes of the strips. We
can see that the values ofhL become constant, as the size
the system grows, for negative values ofbp . Only when
bp is bigger than zero does the exponent start to decre
abruptly towards the expected valuehu50. More than a con-
tinuous variation of the exponent, this behavior indicates t
only for bp5ba5bu is the critical regime governed by th
standardu point, while forbp<bu the system immediately
flows to the universality class of the Manhattanu point. This
scenario is also supported by the fact that the different li
hL(xc

u,bp,bu) are crossing each other twice~apart from the
less asymptotic caseL52) in connection with values clos
to h50.5 andh50, as one can expect if there are only tw
universality classes.

We then conclude this part of our calculation with stro
evidence of the absence of any nonuniversal behavior, b
for ba50 andba5bu , but with the very important resul

FIG. 12. ~a! Values of the parallel interaction parameterbp at
the intersection of two successiveL estimates of xc

L(bp,0),
nL,L12(bp,0), and^mp/N&L(bp,0), and at the maxima of the ste
specific heat (Cp

L/N)(bp,0), against the inverse of the strip widt
L. ~b! As in ~a!, but atba5bu .
s
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that theu line between the free and the collapsed phase
entirely governed~whenbp,bu) by the universality class of
the Manhattanu point. This implies that in the enlarged
phase diagram (bp ,ba) the standardu point acquires an-
other relevant direction, becoming more properly a mu
critical point. The question whether theu line continues for
bp>bu ~as drawn in Fig. 2 by the authors of Ref.@6#!, and
eventually with which value for the exponenth, or whether
it stops atbp5bu , will be investigated in the next section

V. THE PHASE DIAGRAM

We try to map out the phase diagram for the site mo
where we are able to work with the largest sizes@in this case
L up to 7 because the computation ofxc

L(bp ,ba) through
Eq. ~5.4! is very time consuming#. In order to localize the
transition lines we can look at different quantities, such
the critical step fugacityxc(bp ,ba), that stay constant, a
fixedba , for anybp which belongs to the SAW universality
class, and the related order parameters^mp/N&(bp ,ba), the
average number of parallel contacts per step, a
^ma /N&(bp,ba), the average number of antiparallel contac
per step, that can be easily computed by

Kmp

N L ~bp ,ba!5
1

N

] ln@ZN~bp ,ba!#

]bp
→
N→`

2
] ln@xc~bp ,ba!#

]bp
~5.1!

and

FIG. 13. Plot of the order parameter^mp /N&L(bp,0), as a func-
tion of the parallel interaction parameterbp , obtained by using a
transfer matrix with free boundary conditions, for different str
widths L. With these boundary conditions the value^mp /N&51
expected in the spiral phase cannot be reached with strips of fi
width L.
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FIG. 14. As in Fig. 11, but at
ba5bu .
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Kma

N L ~bp ,ba!5
1

N

] ln@ZN~bp ,ba!#

]ba

→
N→`

2
] ln@xc~bp ,ba!#

]ba
.

~5.2!

It is also useful to consider the specific heat per step

Cp

N
~bp ,ba!5

^mp
2&~bp ,ba!2^mp&

2~bp ,ba!

N

→
N→`

2
]2ln@xc~bp ,ba!#

]bp
2 , ~5.3!

which is a sort of ‘‘partial’’ specific heat regarding only th
parallel interaction energy, and the correlation length ex
nentn.

To compute the order parameters and the specific hea
means of the preceding equations, we have to derive fi
size estimatesxc

L(bp ,ba) of the critical fugacity using only
theL-wide strip. We have then to avoid the phenomenolo
cal renormalization group equation~3.7!, so we take
xc
L(bp ,ba) as the value at which the correlation length~3.6!
diverges:

lL
max
„xc

L~bp ,ba!,bp,ba…51. ~5.4!
-

by
te

i-

Of course we still use Eqs.~3.7! and ~3.8! to calculate
nL,L1m(bp ,ba) where we takem52 to avoid the strong
parity effects typical of compact phases.

In Fig. 11 all these quantities are plotted, in the ca
ba50, for different sizes of the strips. Signals of the fre
to-spiral transition are evident. The critical fugacity is co
stant for negative or small values ofbp and then it is drop-
ping down very quickly. The exponentn crosses over from
the SAW value34 to the compact phase value

1
2. The average

number of parallel contacts per site rises from 0 to 1 wh
bp increases and the specific heat is presenting a well defi
peak. A well known and often used method@25–27# to de-
termine the transition consists in pinpointing the cross
points between the different lines drawn in Figs. 11~a!–11~c!
and in following their behavior when the size of the str
increases. These crossing points, together with the pos
of the specific heat maxima, are plotted in Fig. 12~a!. We can
try to localize the transitionbp

t (ba50)5bp
t ~0! to the spiral

phase at

bp
t ~0!50.6~15!.

The order of this transition is harder to determine. There
many indications that it could be of second order, for e
ample,^mp /N& does not jump as abruptly as expected fo
discontinuous transition and there are no strong movem
of the heights of the specific heats. However, we feel tha
the study of this point the effects of the boundary conditio
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FIG. 15. As in Fig. 11, but atba52, in order to evidence the collapsed-to-spiral transition. In this case we do not plot the corre
length exponentn: it is always 1

2 in compact phases.
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can be strong. With the periodic boundary conditions
have used we see that there are parallel contacts whic
not trap the walk. This fact, which is insignificant for neg
tive or small values ofbp , can round the effects of th
free-to-spiral transition for small sizes of the strips. To ver
this hypothesis we build a TM with free boundary cond
tions. In this way we avoid any unwanted parallel intera
tion, but unfortunately this limits the system size~only up to
L56). Still we can see that the order parameter now
creases more rapidly~Fig. 13!, confirming the conjecture o
Refs. @6,10# of a first order transition. This analysis is co
sistent with this conclusion for any linebp5k, such that
k,bu .

The study along theu line becomes even more compl
cated and uncertain because we are moving along a s
unstable points. Moreover, the jump in the exponentn is
now reduced because we are going from a regime withn5
4
7 ~for bp,bu) to another one withn5 1

2 ~for bp sufficiently
large!. All the quantities already calculated in the ca
ba50 are now plotted in Fig. 14 atba5bu . The position of
the crossing points and of the specific heat peaks@Fig. 12~b!#
suggests that the transition takes place at the point

bp
t ~ba5bu!50.70~2!.
e
do

-

-

of

This estimate is not very sharp and we are not able to de
mine if theu point is the ending point of theu line between
the free and the collapsed phases or not.

The analysis of the collapsed-to-spiral transition f
ba.bu helps to elucidate this problem. This kind of trans
tion is very hard to find by numerical methods because m
of the critical indices are the same in the two phases~e.g., the
exponentn). This can create many false indications, as h
been seen for other polymer models@20,28,29#. Fortunately
for this problem the plot of the specific heat seems to pres
a clear peak@Fig. 15~c!# the position of which appears t
converge towards the diagonalbp5ba , for all the values
ba.bu considered. This means that the collapsed-to-sp
transition merges with theu point and, since we expect@6#
the entire spiral transition linebp

t (ba) to be continuous, we
can conclude that the three critical lines all join together
the u point, which becomes a fully repulsive point in th
renormalization group language. While we do not have cl
evidence of the order of the collapsed-to-spiral transition,
fact that for largeba the transition takes place at largebp
could be an indication of a discontinuous transition, as
plained in Ref.@6#.

We end this section by conjecturing a phase diagra
shown schematically in Fig. 16. Once again we must cau
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142 56A. TROVATO AND F. SENO
the reader about the numerical difficulties that we have
deal with, when working near theu point, and in the compac
phases. In such conditions the sizes of the strip are not
enough to give definitive answers. Nevertheless, on the b
of other checks we have done varyingba atbp fixed, and of
preliminary results of renormalization group calculation
position space, we believe our phase diagram to be trustw
thy. We recall that our conclusions were reached with a
merical analysis of the site model, and therefore some n
universal features, such as the location of the transition lin
will not be the same for the other models.

VI. SUMMARY AND CONCLUSIONS

We have numerically studied the critical properties
IOSAW in the plane of parallel and antiparallel interactio
by means of a TM calculation. We decided to give particu
attention to the case in which parallel contacts are forbid
because in such a situation some of the theoretical pre
tions of nonuniversality of the entropic exponentg, obtained
by Cardy, should be more evident than in other parts of
phase diagram. Moreover, the absence of parallel inte
tions allowed us to enlarge the system sizes that could
studied. We devoted some care to choosing more adeq

FIG. 16. A schematic illustration of the conjectured phase d
gram for the site model. Dashed lines represent first order trans
lines. The main critical indices are summarized.
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models with which to study these nonuniversal effects.
Despite these efforts, we found no evidence to supp

Cardy’s theory, but, on the contrary, many indications of
invalidity. We could also see that along theu line, the ex-
tremes of which we have verified to belong to different u
versality classes, the entropic exponent stays cons
changing its value only at theu point. According to us, our
results are more robust than those obtained by Monte C
enumeration@9,10#, because the TM approach allows us
work with really infinite polymers, although restricted in
strip, whereas with other approaches one is always lim
by the finiteness of the walk. If the nonuniversality effe
predicted for this model, as now believed@30#, turned out
only for polymers with a large number of steps, the Mon
Carlo method would miss it, while the TM one would not. O
course the extrapolation analysis in this last case mus
extremely careful and sophisticated.

In the second part of the paper we tried to work out t
full phase diagram for the model with interactions betwe
the sites. In this case the numerical accuracy is not as g
as for the determination of theg exponent, but we were abl
to see clearly the existence of the three expected ph
~free, collapsed, spiral! and of the three lines which are sep
rating them. One of these lines is the above mentionedu line,
which falls in the universality class of the collapse transiti
of ISAW on a Manhattan lattice, while the other two a
probably of the first order. On the basis of our numeric
checks we suppose that these three lines are merging a
standardu point (bp5ba5bu). We think that some new
large Monte Carlo simulations are necessary to verify t
last hypothesis, whereas we believe that our results for
entropic exponent should open a new debate on the non
versality conjecture presented in Ref.@5# in order to clarify
whether the directed application of conformal invarian
fails or why the undetermined functionl(bp) defined in Eq.
~2.6! is so small.
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