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Universality for interacting oriented self-avoiding walk: A transfer matrix calculation
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In this paper we perform transfer matrix calculations to study the two-dimensional problem of oriented
self-avoiding walks on a square lattice where nearest neighbor interactions depend on the relative orientation
(parallel or antiparallelbetween different parts of the path. Our main purpose is to verify a conformal field
theory conjecture that the entropic exponentvhich is related to the number of such walks, varies continu-
ously with the energy of the parallel interaction. We find no evidence of this behavior, but see many unex-
pected features for the model, such as the existence of a liigooints belonging to the universality class of
polymer collapse on a Manhattan lattice. Finally we study the phase diagram in the parallel and antiparallel
interaction planes and we conjecture a crucial role for the stanglgaint. [S1063-651X97)05906-0

PACS numbds): 05.50+q, 05.70.Fh, 61.4%e

I. INTRODUCTION and transfer matrix calculations8] seem to confirm, al-
though with some caution, the existence of such nonuniver-
The problem of a polymer chain collapsing at low tem- sality, whereas the authors of recent extensive Monte Carlo
peratures due to the competition between the excluded vokimulationg9,10] are much more doubtful on the validity of
ume and the attractive interactions between the monometbe conformal invariance hypothesis.
composing the chain has been of long-standing theoretical In this paper we try to get new insight into this problem
interest. The associated phase transition occurs at a tricritichly studying, using the transfer mattiXM) technique, some
0 point[1-4]. The basis for most lattice models is the self- parts of the phase diagram which have not yet been eluci-
avoiding walk (SAW), which, by construction, includes an dated but that are crucial in order to clarify the validity of the
excluded volume interaction, important in physical poly- conjecture.
mers. To mimic the complicated monomer-solvent interac- We first estimate the values of the entropic exponent in
tions that give rise to the collapse transition, an energy ishe limit where the parallel interactions are completely for-
associated with nonconsecutive nearest neighbor portiortsdden. In this limit the effect of the predicted nonuniversal-
(e.g., sites or bondsof the walk[interacting self-avoiding ity is most important while the absence of parallel contacts
walk (ISAW)]. introduces a relevant simplification in the configurational
A simple, but intriguing, modification of the ISAW model analysis, allowing us to work with larger system sizes than in
[5,6] has been recently introduced to study polymers with arthe previous calculations.
intrinsic orientation. Such an orientation could be due to the Secondly, we follow the behavior of along one of the
presence of dipole moments on the monomers of the chairg lines present in the phase diagram. It is possible to apply
or to a precise ordering in the sequence of monomer corheuristic argumentgconfirmed by our numerical woyk
stituents, as in the case of teB polyester[7]. In this  showing that there are different values pfin at least two
model a direction is attached to the whole walk, which inpoints of this line. It then turns out that suchvdine should
turn is associated to each step of the walk. Short-range intebe an optimal candidate for exhibiting a continuous variation
actions are divided in two types according to the relativeof the entropic exponent.
orientation(parallel or antiparallelof the monomers which The main result is that, while no evidence of a continuous
are in contact. variation of the critical index is found, the phase diagram
Such a model, named the interacting oriented selfpresents an extremely rich variety of universality classes.
avoiding walk(IOSAW), has attracted considerable interest The paper is set out as follows. In the next section we
due to some unexpected results predicted for its critical beintroduce the IOSAW model and briefly review the results
havior by conformal field theory. According to the most obtained thus far. We discuss the general features of the
striking of these conjectured results, the entropic exponerphase diagram as they emerge from previous papers and we
v, which relates to the total numbeg, of open walks of recall the conformal field theory predictions and their nu-
length N via the formulacy~N?"1uN, is not a universal merical checks. In Sec. Il we present the TM method to-
guantity. At least for a repulsive energy it would seem together with the phenomenological renormalization group
depend continuously on the temperat|f¢ strategy used to compute the critical exponents. Section IV is
Since the publication of these fascinating but unforeseedevoted to presenting our results for the regime where par-
results, several attempts have been made to verify numerallel contacts are forbidden. As a by-product of this analysis
cally their validity. Despite all of these efforts the situation is we show how it is possible to improve previous TM calcu-
still quite controversial. It is numerically difficult to extract lations for the general problem and we present our estimate
the exponenty and to observe the predicted nonuniversality,for the above mentioned line. We then map the phase
which is expected to be small. Indeed, exact enumergfipbn diagram of the modelSec. V). In the last section we sum-
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FIG. 1. An oriented self-avoiding walk on a square lattice with

parallel and antiparallel interactions between nonconsecutive bond8 the (3y.8.) plane as proposed by Bennett-Woetlal.
Three phases are shown: frele)( collapsed C), and spiral §).

which are nearest neighbors.

A. TROVATO AND F. SENO

C : collapsed phase

=il

9-line

6-point

S : spiral phase

F : free phase

~

FIG. 2. A schematic illustration of a conjectured phase diagram

(6].
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The dotted line is the normdl.e., nonorientedcollapse problem

marize our results and present possible further development4ith 8,= 8, and contains thé point.

Il. THE MODEL AND THEORETICAL PREDICTIONS
The IOSAW model[5,6,8-1Q is an oriented SAW em-

When g,=8,=0, the model describes the free SAW and
the critical exponents  v(0,0)= vgaw=> and
¥(0,0)= ysan=% are exactly known from Coulomb gas

bedded on a square lattice. Interactions are assigned to bon@ghniqueg12]. The case whep, =, is the usual interact-

which are on opposite edges of the lattice plaquétig. 1).

If we indicate byW one of these walks witiW| steps, the
partition function Zy(8,,8,) and the average end-to-end
distanceRy (8 ,8,) for walks with N steps are

Zn(Bp.Ba) = 2 eMp(W) By + Ma(W) 5 (2.1)
[W[=N

; r2(W)eMp(WBp+ ma(W) By
[WT=N

ZN(BpaBa) ’

where the sums are over all the oriented walks of lemdsth
m,(W) andm,(W) are, respectively, the number of parallel
and antiparallel contacts;?(W) is the squared end-to-end
distance for each walk and the parametggsand 3, are
given by B,=Be, and B,=Be,, where S is the inverse
temperature and- €, and — €, are the energies for parallel
and antiparallel interactions. For larfjewe expect

ZN(Bp 7:8a)~[ﬂ(:8p aIBa)]NNY(Bp Bal =1

RR(Bp Ba) ~NZ"(Fp o).

RA(Bp.Ba) = (2.2

(2.3
(2.9

Equation(2.3) is thought to be true at least for all the ex-

ing walk problem: forB,=8,<p8, the model falls in the
universality class of the SAW, whilg depends on the tem-
perature. AtB,=B,= B, the system exhibits tricritical be-
havior (8 poind) with v(8,.8s)=v,=% [2] and
¥(By.Bs)=vo="2[2]. Finally, for B,= B,> B,, it collapses
in its globule phasex= 3).

It is possible to argue that in the phase diagram there are
at least three different regionig. 2): a free phaseR)
occurring for negative or small values g, and g, where
the asymptotic behavior of the walks should be governed by
the SAW correlation length exponent; a spiral phaSg for
high values ofg,, where the most statistically important
walks are tightly bound, compact spirals; and a “normal”
collapsed phaseQ) for high values ofB, and negative or
moderate values g8, .

Much information about the phase diagram can be derived
from the simple, but important, fact that oriented loops
(closed oriented walksdo not contain any parallel interac-
tions. Then the transition between the free and the spiral
phases cannot be the usualtransition because it cannot
occur for loops. The absence of parallel interactions in loops
can also be used to rigorously prove that the free energy
K(Bp.Ba) [and therefore the connectivity constant
u(Bp.B2) in Eq.(2.3)] is constant, for any fixe@,, in the
interval —<B,<p,. This last statement implies that the

tended andf phases, whereas in the collapsed regimes g jine between the free and the collapsed phases is indepen-

more involved expression is needgdL].

The reduced free energy per stef,,3,) in the ther-
modynamic limit can be readily obtained from E®.3)
through the following equation:

K(Bp.Ba)= lim w

N— o

:In[M(IBpaIBa)]-
(2.5

dent of 8,, at least for3,<fB,, and is described by the
equationB,= By -

On the basis of thesénd othey results and consider-
ations, in conjunction with exact enumeration calculations,
the authors of Ref6] predicted a phase diagram, schemati-
cally represented in Fig. 2. According to them, the transition
to the spiral phase may well be first order from either one of
the other two phases.
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The latest numerical work on the IOSAW has dealt only oy s
with the line 8,=0. Reference§8,10] confirm the presence
of a free-to-spiral transition, but disagree on its order. We 7
will return later(Sec. V) to this point, and to the structure of
the phase diagram. 7

In the introduction it was stated that the two-dimensional
conformal invariance field theory predicts some new and un-
expected results for the IOSAW model. The analysis follows
from the fact that the oriented polymer problem can be de- a
rived as the limin—0 of a complexO(n) model[7,13. In
this context the orientation dependent interaction has been
identified with a current-current coupling. Regarding this
coupling as a perturbation of the SAW regime and by using
the result that such a perturbation is truly marginal, it is s
possible to determine the critical exponeftis

Following this scheme Cardy predicted thd{3,, 8,) is a N
nonconstant function g8, when3,=0 (at least for negative
values ofg,,). More precisely, foi3,=0 the operator which :
corresponds to the source ofgaleg oriented SAW scales b
with an exponent

A\
7

9 A FIG. 3. (a) An oriented SAW configuration with a trapped end
997 2 2 but without any parallel contact between bonds. An oriented
Xa(BpO) = 48 27\ (Bp)A"=xq(0,0)+ 27\ (Bp) 4", SAW configuration with a trapped end but without any parallel
(2.6)  contact between sites.

2

where\(g,) is an unknown function o3, having the op- . : : .
posite sign of its argumerit.e., A(0)=0] and supposed to TM calculation of Ref.[8] where the scaling dimensions
be monotoni¢6]. These exponents are related to the entropicta(Bp:0) were calculated for q=1,2,3,4 and for

exponentsy, through standard scaliri§], and for the linear Bp=—1,—2,—3. However, more recent Monte Carlo enu-
p0|ymer5, e_g_q:l, it turns out that merat|0n8[10] show that for Iargd\l (N up to 5000)<mp>

seems to saturate to a constant in clear contrast with the
43 conformal field theory conjecture. In our opinion, this result
VB O =12= 28, 0)]=v Zl_‘hﬂ\(ﬁp))' cannot be considered definitive, because the nonuniversality
(2.7 effect would lead to a very tiny slope f¢m,) as a function
of InN. This could still be present in the results of REHf0].

To start our analysis of this puzzling problem we notice
that A, (if the theory is corregtreaches its maximum value
for B,= —c. The most convenient thing to do would be to
work exactly in that limit where the calculation is even sim-

Two strategies have been employed to check this conjecQler than elsewhere in the. phgge diagram, bgcause the ab-
ture. One is based on the calculations of the two quantitiesS€NCe of parallel contacts simplifies any numerical approach.
This simplification will increase the size of the semi-infinite
Aq(Bp:0)=v4(0,0)— v4(Bp,0), (2.8)  strips that can be studied through a TM approach.
It has been observelb,6] that the presence of parallel
Ag(Bp,0)  a(q+1) contacts implies that at least one end of the walk is trapped.
Ay (Bp,0) q'(q'+1)

One may expect that fg8,= —, when parallel contacts are
strictly forbidden, the walks could not be trappé@ihis fact

for different values ofj andq’. The gapsA4(8,,0) should has been used by Cardy to state that, if his conjecture is

increase asB, goes to—o while the ratiosRy 4/(8,,0) right, the fraction of untrapped walk, which goes withas

should be independent fro,, . N7(=#)=70) is vanishingly small whemN— ). However,

The second scheme follows from the fact thatyifde-  this is not the case for the IOSAW model with interactions
pends onB, then(m,), the average number of parallel con- between bonds on a square lattice. As shown in Fig), &
tacts, should grow at the SAW point logarithmically with the is possible to have a trapped walk without any parallel bond
length of the walkN, otherwise it should be independent of interactions.

N. We then propose two changes to the model. The first one

Earlier results obtained from exact enumeratidi§ is to consider interactions between nearest neighbor sites
found very tiny values forA;(—o) [0.0091(33) and (rather than bondsof the oriented walk which are not di-
0.0115(15], but a possible confirmation of the theory was rectly linked. As can be seen in Fig. 4, this makes it more
found by looking at the two-legged case and by noticing thatdifficult to assign the type of energy contdptarallel or an-
up to lengthN=27, (m,) was growing logarithmically with tiparalle), however, the model is still well defined and in the
N [6]. Further support to Cardy's theory was given by thelimit 5,— —o we no longer have the undesired configura-

It has to be pointed out that a dependence@gnis not
expected forv, whereas a behavior similar to the one ex-
pressed by Eq92.6) and (2.7) should be valid for the por-
tion of the plangs,= B, and B,< 8, where the unperturbed
regime is that of the SAW model.

Rq,q’(ﬁpao): 2.9
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FIG. 4. An oriented SAW on the square lattice with parallel and ! Y y

antiparallel interactions between sites which are nearest neighbors ! '
not directly linked by the walk.

. . .. . FIG. 5. The Manh lattice: i lattice.
tions of Fig. 3a). However, this is not enough: Fig.(t3 G. 5. The Manhattan lattice: an oriented square lattice

shows a trapped configuration without any parallel contacts
between sites. A third version of the model is then necessary, ~ !ll: THE TRANSFER MATRIX CALCULATION
which takes into account also next-nearest neighbor interac-

tions (we call it the plaquette model because, from a compuyatistical mechanics. It has been extremely effective in the

tational point of view, it is convenient to consider single study of models of interacting polymers in two dimensions
plaquettes of the lattice and to verify whether they are visite({16_2q_

by different portions of the wajk In this way the problem of
trapped walks is completely solved, although the definition, g
of parallel or antiparallel contacts is quite cumbersome. Both
for the site and for the plaquette model it is possible to red-
erive [14] all the rigorous results obtained in RE@].

Before returning our attention to the free-to-collapsed : i : : i : i i :
phase line of points we recall an argument due to Bennett- — e
Wood et al. [6]. There is a close analogy between the A L 5 :
IOSAW problem forg,= —2 and that of interacting walks
on a Manhattan lattice. The Manhattan lattice is a two-
dimensional square lattice on which bonds are directed, so P
that there is no overall directional bigBig. 5. On this lat- SR - : o !
tice a SAW is oriented by default, but in the interacting case 5 :
there are no parallel interactiofis the spirit of the plaquette
mode).

This model has been exactly solved at its collapse transi-
tion [15]. It turns out that the exponemtis unchanged com-
pared to the standaré-point value of3, while the exponent
v is ¢ instead of2. Although this mapping betweeasaw at @=-- —®--- —

o
&)

The TM has proven to be a useful tool for problems in

It is convenient to define a two point correlation function

Bp=— and ISAW on the Manhattan lattice is not rigorous, !

it is quite plausible that the poiniB,=—=,8,=8,) in the

oriented polymer phase diagram falls in the same universal- --- -
ity class as the point of Manhattan walks. If this conjecture

is verified, two points along thé@ line have very distinct ©
values of the y exponent: y(—«,B8,)=2 and o L o---

Y(By.Be) =2 It is then intriguing to think that Cardy’s hy- ' !

pothesis may also hold along the free-to-collapse line where, -

due to the quite clear difference between the extremal values,

it should be much easier to see a continuous variation of the . 6. Example of possible configurations defined for a SAW

exponenty. In order to study these questions we decided tn a strip of widthL =6, in the simple case without either orienta-
use the TM technique. tion or interaction.

&
!
|
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TABLE I. Transfer matrixes siz&, of g-legged walks for dif- T

ferent values of the strip width at 8,=— in the case of sitéor - (@) _
plaquette interaction. =T @m«\
S, for g-legged walks S oavl ]
Strip width L q=1 q=2 o
1 1 5" 0.36 L A
2 1 " C 1
3 2 [e x22v=0.3790523 \ of, =0
4 6 1 0.351 ) 3
> 23 2 T R E— s B, = -1
6 95 10 1L
7 398 41 DB = -2
8 1716 200 P
9 7487 932 g - 3
10 33121 4470 0.76 [~ =B, =
11 147909 21212 B
12 101090 onal @By =
. i
< & oz
G(X,Bp,Barf)= 2 2 xNeMFotMafacy(my,my,r) 3
N=1 my.m, B

(3.9 07

wherex is the step fugacity andy(m,,m,,r) is the number
of different oriented walks, made up witi steps andm, 0.685————
(m,) parallel(antiparalle] contacts which connect the origin
with an arbitrary point at distanae For fixed values of3,

and B, a definite valuexc(Bp,Ba)=1/u(Bp.Ba) exists, FIG. 7. (a) Critical fugacity x;"""*(,,0) for the site model
called critical fugacity, such tha(x, By, B, 1) decreases at  ,gainst the inverse of the strip widthat 8,= —1,~2,~3,~ . (b)
long distances exponentially withfor x<X.(8p,,8a), defin-  piot of the critical exponent, | ;1(Bp,0) at the same values of
ing in this way a correlation lengté(x, 8, , 8a): f, and with the same conventions as(@.

G(X, By, Bart) ~ exXg — r 32 For each couple of allowed configuratiods and C’,
eEat E(X,Bp,Ba)] ' thought to correspond to adjacent columns, the TM is set up
by calculating the quantity

§(X,Bp,Ba) diverges whernx "Xc(Bp,B,) and the way in

. . . _yt(c c' c'.c c’ c'c
which it breaks away gives the exponenbf Eq. (2.4): Toor = XU @Pplup(C) +0p(CT. O] gBalua(CT) Foa(COT

(3.9
~ — -v(B rBa)
§(X,BpBa) ~[Xc(Bp, Ba) —X] ™ "Fr-Pal, 3.3 wheret(C) is the number of occupied bonds dh up(,)(C)

The TM approach consists of calculating exactly the cor-the number of parallelantiparalie] contacts inC, and

: . : C’,C) the number of parallglantiparalle] contacts be-
relation length&, (x,3,,B,.), defined in Eq.(3.2, on an Up(a)( o ;
L X0 strip, that is to say, a lattice strip of infinite length and tween the monomers 6" and those added to obtain con-

finite width L. The idea is to write recursion relations be- figurationC. If there is no way to connect the two configu-

tween a strip of lengtht and a strip of lengthr+ 1. If we ra’ugnsc S}ndc ’tt.r)]g, rr?atrg elememTCCt/ |§fzero. b of width
consider a walk on a strip which goes from the left to the nce the matri as been computed for a strip of wi

: ; - L, it is trivial to extract the statistical quantities of interest.
right and we cut the strip at column(see Fig. 6, the part of ’ ) : .
the path at the left of column realizes a connectivity con- Ar\]s r|—>oo, the.expreslmonfcﬂ;h;(/lx,ﬁn%ﬂa,r) IS (.jomlnated by
figurationC of the sites at column. Giving C is the same as the largest eigenvalue of thew, A Y(X"BP Ba):
knowing the occupied sites of columnand how these oc-
cupied sites are connected with each other by the part of the GL(x,Bp 'Ba*r)r
walk at the left ofr. In order to consider the interacting case,
we have to take care, in the definition of a given Comclgura'This means that for a strip of width the correlation length
tion C at columnr, also about the bonds occupied by the.
is given by

walk between columns—1 andr.

The number of possible configuratiodscorresponds to
the sizeS, of the TM; this size can be strongly reduced by EL(X,Bp.Ba)=— -
considering symmetry operations. I\, By Ba)

-~ [)\Ta)b(”gp,ﬂa)]r_ (3.9

—

(3.6
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FIG. 9. Plot of the quantit;‘s'il(—oo), defined in Eq(4.1) of the
text, against the inverse of the strip widthfor all the considered
FIG. 8. (a) Critical exponenty (x3*", 8,,0) against the inverse models(bond, site, and plaquejte
of the strip widthL at 8,=—1,—2,—3,— for the bond modelb)
As in (a)fa_ut for the site model, and for the plaquette model in the §L(X|5’L+m By B2 §L+m(X|E’L+m By B2
casefB,=—x. 3 = — . (3.7
m

A one-parameter phenomenological renormalization

group approach can be used to obtain finite size approxim%herem is an integer numbeusuallym=1 orm=2). Lin-
tions to the critical fugacityxs’=*™(8,,8.), by comparing

. . k . earizing around the fixed point of E(.7) gives a series of
}_hi r::]erelatlon lengths of strips of different widtHs,and approximations for the correlation length exponent

d& (X, Bp.Ba)
1 dx

. | x=x'c""+m(ﬁp Ba) 1 3.9
VL,L+m(,8puBa) d§L+m(XvarBa) In( L
dx K ) L+m

To examine the exponent one can use the scaling rela- for anyqg-leg type of oriented polymers. Of course the whole
tion »=2x=2— y/v, wherey is the exponent governing the procedure is not a trivial task since, in our model, the walk
decay at long distances of the critical correlation function.carries an orientation. As explained in RgF] this implies a
Finite size approximations tg; can be obtained from the |arger TM than for the standard ISAW problem. Moreover, it
conformal invariance resul@1]: is much more complicated to keep track of the noncrossing

L constraint: some configurations have to be disregarded if the
(X, By, Ba) = 2X(X, Bp , Ba) = ———————, orientations of the dlf_ferent parts of the walk are not consis-
B e RTERER g (X, By . Ba) tent with this constraint.

The situation is slightly simpler if we restrict ourselves to
where the correlation length is evaluated for a strip withth® case where parallel bonds are forbidd@g< —<). In
periodic boundary conditions. this case a configuratiofi such thatu,(C)#0 cannot exist.

The previous analysis can easily be adapted for any kin@y using suitable symmetry and periodic boundary condi-
of IOSAW model(bond, site, or plaquette interactiorand  tions we could work for the bond, site, and plaquette mod-
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TABLE Il. Critical exponenty (x2*W,—,0) for different val- 06
ues of the strip width_ in the three models considered, with final
extrapolations in the thermodynamic limit—o; the power-law
convergence exponent used in the Bulirsch-Stoer algorithm is
w=1. The error bars have a purely statistical meaning.
(", —,0)
Strip width L Bonds Sites Plaquettes o4 i
1 0.308786 0.308786 0.308786 3{
2 0.258368 0.617572 0.617572 iy
3 0.251908 0.387552 0.469266 =
4 0.246514 0.323980 0.386670
5 0.241406 0.293070 0.339154 02 .
6 0.237080 0.275156 0.309874
7 0.233584 0.263574 0.290700
8 0.230786 0.255490 0.277438 FoXe = 031125 6, = 0.658
9 0.228524 0.249526 0.267818
10 0.226670 0.244940 0.260560
11 0.241300 oy » 5 y
Extrapolations 0.20932) 0.209610) 0.208%14) B,

FIG. 10. Critical exponenbyL(xg,Bp,,B,,) against the parallel

els with strips up toL=10, L=11, L=10, respectively, in interaction paramete8,, for different strip widthd_.
the case of one-leg polymers. The sizes of the different ma-
trices are listed in Table I. IOSAW (site, bond, plaquetie we first compute

For the general IOSAW model, without any configura- xt'“m(,Bp,ﬁa) (the casem=1 is the most usedby using
tional simplification, we could operate with widths up to Eq. (3.7). We then estimate the correlation length exponent
L =9 for each of the models considered. This corresponds to, | . (8,,8,) through Eq. (3.8) and the exponent
an improvement of two units compared to the previousy (x,8,,8,) by means of Eq(3.9). In this last case the
analysis of the same problef8]. most natural strategy is to compute(X, 3,,8,) at the criti-
cal valuex=x5""""(8,,B,) obtained with the phenomeno-
logical renormalization group la\8.7).

However, it is more efficient to explicitly use the fact that
Xc(Bp,0) is constant and equal tq.(0,0) for any value of

We start our numerical analysis by considering the lineg, less than 0. Along this line we can then calculateat
Ba=0 for B,<0, where the theoretical predictions of con- x=x,(0,0)=x3"V using the estimatex>"V=0.379 052 3
formal invariance should hold in the form expressed by Eq[22]: in this way it turns out that these estimates:gf are
(2.7). For fixed values ofg, and 8, and for any type of more asymptotic than with the standard approach.

We repeated this procedure fgt,=—1,—2,—3 where

TABLE llI. Critical exponentz, (x¢,—=,8,) for different val- ~ some measurements have already been made i &efith
ues of the strip widti_ in the sites model, with final extrapolation the bond model, but where our calculation adds two extra
in the limit L—oo; the power-law convergence exponent used in theterms for the strip width., and for the more significant case
Bulirsch-Stoer algorithm isv=2. The error bars have a purely Bp=— where our TM can work with strips up to=11 or

IV. ANALYSIS OF THE NONUNIVERSALITY
PREDICTION

statistical meaning. L= 10, depending on the model.
—— ) As a check of the quality of our approach and to under-

Strip width L 7 (Xe, =, By) stand the kind of convergences in_1tb expect, we consider
1 0.371570 the critical fugacityxs'"**(8,,0) and the thermal exponent
2 0.743138 v L+1(Bp,0). Both these two quantities should maintain
3 0.582390 their SAW values {saw=3=0.75 andx>""=0.379 052 3)
4 0.555390 for any value ofg,. In Fig. 7 we plot these results for the
5 0.537908 site model. In order to make a comparison we insert the
6 0.528058 estimates for the SAW case where we can work with strip
7 0.521530 widths up toL =13.
8 0517070 Altho_ugh th_e convergence is much slower than_ for the
9 0.513858 SAW , it is quite clear that the different sets of points ap-
10 0.511496 proach the ex_pected values. Th_|s can easily be comjrr_ned by
11 0509748 an extrapolation of the data with one of the sophisticated

techniques that are used with TM calculations, such as the

Extrapolations 0.501@0) Bulirsch-Stoer algorithni23,24].
We can then look at the entropic exponent
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FIG. 11. One-strip critical
-1 0 8 1 2 fugacity x5(8,,0) (), correlation
e length exponent | | »(8p,0) (b),
average number of parallel con-
tacts(m, /N), (8,,0) (¢), and step
s specific heat Cj/N)(8,,0) (d)
=l 'd' T IL—l'?l "7 T 7] against the parallel interaction pa-
L (d) - rameter B, for different strip
L widths L.
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HL(XEAW,,Bp,O)- In Figs. 8) and 8b) the obtained results the following eq_uation we havg neglected the dependence on
for the three models are plotted together with those for thé3a ans%enxc, since they are fixed to the valugg=0 and
SAW case. Again, at first sight, the data seem to converge téc¢~ Xc )
the SAW value @saw==0.208) for every value of
Bp, but this time we have to be more careful because the S, o (By)= A7q(Bp) _ 74(Bp) ~ 174(0) (4.
absolute values of the estimates are still quite far from the PP A g (Bp)  mq(Bp) = 1qr(0)
final results(Table 1l); this means that the convergence is
much slower than fok, and v. Nevertheless the application which, for any value ofg, less than zero, should give
of extrapolation techniques again confirms an asymptotiéa/q’)? according to Eq(2.6).
value for » very close to the SAW one for any value of In Fig. 9 we plot our estimates cﬁéll(,Bp=—°o) as a
Bp. Looking at Table Il, we see that the extrapolated valuegunction of 1L, for the three models. We can see that the
of n(—) for the three models are slightly higher than the data do not approach the expected value 4, but seem to be
SAW value. If we want to be conservative and consider onlyapproaching three distinct values as is possible from Eqg.
the site model which gives the highest estimate of the expot4.1) if 74(—%) = 74(0).
nent, we cannot completely rule out the prediction of non- These results seem to be in clear contrast with (Bd),
universality, but if we calculate the gay, (— =), defined by and we conclude this part of the analysis by saying that the
Eg. (2.9), we find that it is around 0.001, nine times smaller nonuniversality effects are unlikely along ti#g=0 line.
than observed by exact enumerati@j. In other words, if To verify the other possibility, mentioned in Sec. Il, that a
the nonuniversality exists it must give rise to an extremelycontinuous variation of the entropic exponentould occur
tiny effect. Indeed, from our numerical data, we can estimatalong thed line between the free and the collapsed phases,
an upper bound for the undetermined functjaif3,)| [de-  we first check that the poinig,= —=, B,=8,) really falls
fined in Eq.(2.6)] equal to|\ 15d =|\(—)|=0.0001. This in the universality class of the interacting SAW on a Man-
conclusion has been confirmed with the other two modeldattan lattice. To this end, it is convenient to work with the
(bond and plaquetje site model because in the nonoriented cghgs B, , it cor-

As a further check we consider two-leg oriented walks.responds to the model usually employed to studyahen-
Instead of the quantity described in E@.9), it is more  sition, for which the location of transition and the relative
convenient to look at the variabl§, 4/(8,,) defined by(in critical fugacity have been determined very accurately by
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[ ] _ FIG. 13. Plot of t_he ordgr paramet@np/N)L(B_p,O), as a f_unc-
0.8f- "8 o tion of the parallel interaction parametgy,, obtained by using a
r o® ° transfer matrix with free boundary conditions, for different strip
0.8 ———— gl —— 7 widths L. With these boundary conditions the valge,/N)=1
1/L expected in the spiral phase cannot be reached with strips of finite

) ) width L.
FIG. 12. (@) Values of the parallel interaction paramejgy at

the intersection of two successive estimates ofxt(ﬁp,O),

v L+2(Bp:0), and(my/N) (B,,0), and at the maxima of the step
specific heat C;/N)(,Bp,O), against the inverse of the strip width
L. (b) As in (a), but atB,=By.

that the # line between the free and the collapsed phases is
entirely governedwheng,< ;) by the universality class of
the Manhattand point. This implies that in the enlarged
phase diagramg,,8,) the standardd point acquires an-
means of Monte Carlo calculationf4] at the values Other relevant direction, becoming more properly a multi-
Bp=Ba=B,=0.658(4) andk(By,B,) =x2=0.3112(13). critical point. The ques_tion whether theline continues for
Our estimates forzy (x!,—,8,) with strips up to Bp=Bs (as drawn in Fig. 2 by the authors of Ré8]), and
L=11 are listed in Table Ill. They converge towardisas eventually with which value for the exponent or whether

expected for the Manhatta point wherey= ¢ and v= . it stops atB,= B4, will be investigated in the next section.
To explore thed line we have to use the standard TM, the
one implemented for the whole phase diagram, which allows V. THE PHASE DIAGRAM

us to work with strips up t&. = 8. (For each single point we
can work with strip widths up to 9, as said in the preceding We try to map out the phase diagram for the site model
section, but the time required to study the full line would bewhere we are able to work with the largest sigiesthis case
prohibitive) The exponenty, (x(,B,,B,) is plotted in Fig- L up to 7 because the computation xif(3,,8,) through
ure 10 as a function g8,, for different sizes of the strips. We Eq. (5.4) is very time consuming In order to localize the
can see that the values gf become constant, as the size of transition lines we can look at different quantities, such as
the system grows, for negative values 8f. Only when the critical step fugacity(Bp,8,), that stay constant, at
B, is bigger than zero does the exponent start to decread&ed S5, for any B, which belongs to the SAW universality
abruptly towards the expected valyg=0. More than a con-  class, and the related order parameteng/N)(8,,8,), the
tinuous variation of the exponent, this behavior indicates tha@verage number of parallel contacts per step, and
only for B,=B.= B, is the critical regime governed by the (Ma/N)(Bp.B4), the average number of antiparallel contacts
standardg point, while for 8,< 8, the system immediately Per step, that can be easily computed by
flows to the universality class of the Manhatt@point. This
scenario is also supported by the fact that the different lines m, 1 9In[Zn(Bp.Ba)]

4 H : _—r - F %
7.(X¢. Bp: By) are crossing each other twicapart from the < N >(Bpa:8a =N B —
less asymptotic case=2) in connection with values close P N—e

to »=0.5 and»=0, as one can expect if there are only two AIN[X<( By Ba)]
universality classes. - p P (5.1
We then conclude this part of our calculation with strong Bp

evidence of the absence of any nonuniversal behavior, both
for B,=0 and B,=B,, but with the very important result and
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FIG. 14. As in Fig. 11, but at
Ba=By-

m, 1 9IN[Zn(Bp.Ba)] Of course we still use Eqs3.7) and (3.8) to calculate
<W>(ﬁp! a :NT v L+m(Bp.Ba) Where we takem=2 to avoid the strong
a parity effects typical of compact phases.
AIN[Xe(Bp . Ba)] I_n Fig. 11 all the§e guantities are pl_otted, in the case
- T. a—Q, for d|ff_e_rent S|zes_of the strips. _S|gnals of th_e free-
N—e a to-spiral transition are evident. The critical fugacity is con-

(5.2 stant for negative or small values gf, and then it is drop-
ping down very quickly. The exponemt crosses over from

It is also useful to consider the specific heat per step the SAW value? to the compact phase valdeThe average

m2 B.)—(m VB, number of parallel contacts per site rises from 0 to 1 when
%(ﬂp,ﬁa)=< p>('3p Ba) N< o (By.Ba) B, increases and the specific heat is presenting a well defined
peak. A well known and often used meth(2b6—27 to de-
N[ By Ba)] termine the transition consists in pinpointing the crossing
- = e (5.3  points between the different lines drawn in Figs(al411(c)
N—sc0 By and in following their behavior when the size of the strip

o Y - _ increases. These crossing points, together with the position
which is a sort of “partial” specific heat regarding only the of the specific heat maxima, are plotted in Fig(@2We can
parallel interaction energy, and the correlation length expoyyy to |ocalize the transitio'ﬁ;(lgazo)ztg; (0) to the spiral

nentw. 3 phase at
To compute the order parameters and the specific heat by

means of the preceding equations, we have to derive finite BL(O):O_&]_S)_

size estimatext(ﬁp ,B2) of the critical fugacity using only

the L-wide strip. We have then to avoid the phenomenologi-The order of this transition is harder to determine. There are

cal renormalization group equatiof3.7), so we take many indications that it could be of second order, for ex-

xc(Bp.Ba) as the value at which the correlation leng#e) ample,(m,/N) does not jump as abruptly as expected for a

diverges: discontinuous transition and there are no strong movements

e L of the heights of the specific heats. However, we feel that in

A (X (Bp 1 Ba), Bp Ba)=1. (5.4 the study of this point the effects of the boundary conditions
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FIG. 15. As in Fig. 11, but aB,=2, in order to evidence the collapsed-to-spiral transition. In this case we do not plot the correlation
length exponent: it is always% in compact phases.

can be strong. With the periodic boundary conditions weThis estimate is not very sharp and we are not able to deter-
have used we see that there are parallel contacts which dnine if the # point is the ending point of thé line between
not trap the walk. This fact, which is insignificant for nega- the free and the collapsed phases or not.
tive or small values ofB,, can round the effects of the  The analysis of the collapsed-to-spiral transition for
free-to-spiral transition for small sizes of the strips. To verifylga>,30 helps to elucidate this problem. This kind of transi-
this hypothesis we build a TM with free boundary condi- tion is very hard to find by numerical methods because many
tions. In this way we avoid any unwanted parallel interac-of the critical indices are the same in the two phaseg., the
tion, but unfortunately this limits the system si@@ly upto gynonenty). This can create many false indications, as has
L=6). Still we can see that the order parameter now iNyaen seen for other polymer modgRo,28,29. Fortunately
creases more rapldI§F|g. 13, conﬂrmmg Fhe conje_ctgre of for this problem the plot of the specific heat seems to present
Refs.[6,10] of a first order transition. This analysis is con- a clear peaKFig. 15c)] the position of which appears to
sistent with this conclusion for any ling,=k, such that converge towards the diagon@l,= 5., for all the values

a:r

k<By. : . .
Tﬁhee study along the line becomes even more compli- Ba> By considered. This means that the collapsed-to-spiral
nsition merges with thé point and, since we expeff]

cated and uncertain because we are moving along a set X i e i

unstable points. Moreover, the jump in the exponenis the entire spiral transition Ilnﬁp'(',Ba) t'o be copt!nuous, we

now reduced because we are going from a regime with ~ €a" conclude that the three critical lines all join together at

4 (for B,< ) to another one with/= 1 (for B, sufficiently the 6 point, yvhlch becomes a fully .repulswe point in the

large. All the quantities already calculated in the Caserer_lormallzanon group language. While we (_do not h"’?‘(e clear
evidence of the order of the collapsed-to-spiral transition, the

Ba=0 are now plotted in Fig. 14 &,= B,. The position of "
the crossing points and of the specific heat pé&ig. 12b)] fact that for I.arg_e,Ba_ the transition tgkes place at larg;
could be an indication of a discontinuous transition, as ex-

suggests that the transition takes place at the point plained in Ref[6].

X We end this section by conjecturing a phase diagram,
Bp(Ba=PBy)=0.7012). shown schematically in Fig. 16. Once again we must caution
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models with which to study these nonuniversal effects.

collapsed phase: P 6-point: Despite these efforts, we found no eviden.ce to support
A ;:;‘//77 Cardy’s theory, but, on the contrary, many indications of its
éﬂﬁ =0 invalidity. We could also see that along tléeline, the ex-
tremes of which we have verified to belong to different uni-
Gline: v=4/7.926/7.m=1/2  |B . . versality classes, the entropic exponent stays constant,
: ’ » " spiral phase: changing its value only at the point. According to us, our
' V=12 results are more robust than those obtained by Monte Carlo
- enumeratior[9,10], because the TM approach allows us to
i B B work with really infinite polymers, although restricted in a
free phase: SAW _ strip, Whe_reas with other approaches one i's alwqys limited
ve3rd by the finiteness of the walk. If the nonuniversality effect
y=43/32 lj predicted for this model, as now believg80], turned out
n=5/24 only for polymers with a large number of steps, the Monte
i Carlo method would miss it, while the TM one would not. Of
: course the extrapolation analysis in this last case must be

extremely careful and sophisticated.
o ) ) ) In the second part of the paper we tried to work out the
FIG. 16. A schematic illustration of the conjectured phase dia+ || phase diagram for the model with interactions between
gram for the site model. Dashed lines represent first order transitiO{he sites. In this case the numerical accuracy is not as good
lines. The main critical indices are summarized. as for the determination of the exponent, but we were able

to see clearly the existence of the three expected phases

the reader about the numerical difficulties that we have t . . :
X . . . free, collapsed, spirahnd of the three lines which are sepa-
deal with, when working near th@point, and in the compact (.%rating themp. One c?ftﬁese lines is the above menticha P

phases. In S.UCh C(.)n.d.'tlons the sizes of the strip are not bI\%hich falls in the universality class of the collapse transition
enough to give definitive answers. Nevertheless, on the basi

ofcier chec we hauecone vang at e, and o ) AL O 8 MeTTeter R sl e oner e e
preliminary results of renormalization group calculation in P Y .

. . ; checks we suppose that these three lines are merging at the
position space, we believe our phase diagram to be trustwor- dard . P We think th
thy. We recall that our conclusions were reached with a nustandardd point (B,=fa=p,). We think that some new
" . . large Monte Carlo simulations are necessary to verify this
merical analysis of the site model, and therefore some nory;

i . ... last hypothesis, whereas we believe that our results for the
universal features, such as the location of the transition lines . ;

: éntropic exponent should open a new debate on the nonuni-
will not be the same for the other models.

versality conjecture presented in RE5] in order to clarify
whether the directed application of conformal invariance
fails or why the undetermined function(3,,) defined in Eq.

We have numerically studied the critical properties of (2.6) is so small.
IOSAW in the plane of parallel and antiparallel interactions
by means ofaTM cal_culatl_on. We decided to give partu_:ular ACKNOWLEDGMENTS
attention to the case in which parallel contacts are forbidden
because in such a situation some of the theoretical predic- We would like to thank J. L. Cardy, A. Maritan, A. L.
tions of nonuniversality of the entropic exponentobtained  Stella, and C. Vanderzande for enlightening and interesting
by Cardy, should be more evident than in other parts of theonversations and D. Bennett-Wood and A. J. Guttmann for
phase diagram. Moreover, the absence of parallel interagiving us the full series of their exact enumerations. We are
tions allowed us to enlarge the system sizes that could balso grateful to D. P. Foster for a critical reading of the
studied. We devoted some care to choosing more adequateanuscript.
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